POLYNOMIALS

EXERCISE 2.1

QUESTION 1. The graphs of $y=p(x)$ are given below, for some polynomials $p(x)$. Find the number of zeroes of $p(x)$, in each case.

SOLUTION. (i) There are no zeroes as the graph does not intersect the x-axis.
(ii) The number of zeroes is one as the graph intersects the x-axis at one point only.
(iii) The number of zeroes is three as the graph intersects the x-axis at three points.
(iv) The number of zeroes is two as the graph intersects the x-axis at two points.
(v) The number of zeroes is four as the graph intersects the x-axis at four points.
(vi) The number of zeroes is three as the graph intersects the x-axis at three points.

Ans.

EXERCISE 2.2

QUESTION 1. Find the zeroes of the quadratic polynomials and verify a relationship between zeroes and its coefficients.
(i) $x^{2}-2 x-8$
(ii) $4 s^{2}-4 s+1$
(iii) $6 x^{2}-3-7 x$
(iv) $4 u^{2}+8 u$
(v) $t^{2}-15$
(vi) $3 x^{2}-x-4$

SOLUTION. (i) $x^{2}-2 x-8=x^{2}-4 x+2 x-8=x(x-4)+2(x-4)=(x-4)(x+2)$
So, the value of $x^{2}-2 x-8$ is zero when $x-4=0$ or $x+2=0$, i.e., when $x=4$ or $x=-2$.
So, the zeroes of $x^{2}-2 x-8$ are $\mathbf{4}, \mathbf{- 2}$.
Sum of the zeroes $=4-2=2=\frac{-(-2)}{1}=\frac{- \text { coefficient of } x}{\text { coefficient of } x^{2}}=\mathbf{2}$
Product of the zeroes $=4(-2)=-8=\frac{-8}{1}=\frac{\text { constant term }}{\text { coefficient of } x^{2}}=-\mathbf{8}$
(ii)

$$
\begin{aligned}
4 s^{2}-4 s+1 & =4 s^{2}-2 s-2 s+1 \\
& =2 s(2 s-1)-1(2 s-1) \\
& =(2 s-1)(2 s-1)=(2 s-1)^{2}
\end{aligned}
$$

So, the value of $4 s^{2}-4 s+1$ is zero when $2 s-1=0$, or $s=\frac{1}{2}$
Zeroes of the polynomial are $\frac{\mathbf{1}}{2}, \frac{\mathbf{1}}{2}$

Sum of the zeroes $=\frac{1}{2}+\frac{1}{2}=1=-\left(\frac{-4}{4}\right)=\frac{- \text { coefficient of } s}{\text { coefficient of } s^{2}}=\mathbf{1}$
Product of the zeroes $=\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)=\frac{\text { constant term }}{\text { coefficient of } s^{2}}=\frac{\mathbf{1}}{\mathbf{4}}$
Verified.
(iii) We have : $6 x^{2}-3-7 x=6 x^{2}-7 x-3=6 x^{2}-9 x+2 x-3$
$=3 x(2 x-3)+1(2 x-3)=(3 x+1)(2 x-3)$
The value of $6 x^{2}-3-7 x$ is 0 , when the value of $(3 x+1)(2 x-3)$ is 0 , i.e., when $3 x+1=0$ or $2 x-3=0$, i.e., when $x=-\frac{1}{3}$ or $x=\frac{3}{2}$.
$\therefore \quad$ The zeroes of $6 x^{2}-3-7 x$ are $-\frac{\mathbf{1}}{\mathbf{3}}$ and $\frac{\mathbf{3}}{\mathbf{2}}$.
Therefore, sum of the zeroes $=-\frac{1}{3}+\frac{3}{2}=\frac{7}{6}=\frac{-(-7)}{6}=\frac{- \text { Coefficient of } x}{\text { Coefficient of } x^{2}}=\frac{7}{6}$
and product of zeroes $=\left(-\frac{1}{3}\right)\left(\frac{3}{2}\right)=\frac{-3}{6}=\frac{\text { Constant term }}{\text { Coefficient of } x^{2}}=\frac{-\mathbf{3}}{\mathbf{6}}$
Verified.
(iv) We have : $\quad 4 u^{2}+8 u=4 u(u+2)$

The value of $4 u^{2}+8 u$ is 0 , when the value of $4 u(u+2)=0$, i.e., when $u=0$ or $u+2=0$, i.e., when $u=0$ or $u=-2$.
$\therefore \quad$ The zeroes of $4 u^{2}+8 u$ are $\mathbf{0}$ and - $\mathbf{2}$.
Therefore, sum of the zeroes $=0+(-2)=-2=\frac{-8}{4}=\frac{\text { Coefficient of } u}{\text { Coefficient of } u^{2}}=-\mathbf{2}$.
and product of zeroes $=(0)(-2)=0=\frac{0}{4}=\frac{\text { Constant term }}{\text { Coefficient of } u^{2}}=\mathbf{0}$
Verified.
(v) We have: $t^{2}-15=(t-\sqrt{15})(t+\sqrt{15})$

The value of $t^{2}-15$ is 0 , when the value of $(t-\sqrt{15})(t+\sqrt{15})$ is 0 , i.e., when $t-\sqrt{15}=0$ or $t+\sqrt{15}=0$, i.e., when $t-\sqrt{15}$ or $t+\sqrt{15}$.
$\therefore \quad$ The zeroes of $t^{2}-15$ are $\sqrt{\mathbf{1 5}}$ and $-\sqrt{\mathbf{1 5}}$.
Therefore, sum of the zeroes $=\sqrt{15}+(-\sqrt{15})=0=\frac{-0}{1}=\frac{- \text { Coefficient of } t}{\text { Coefficient of } t^{2}}=\mathbf{0}$
and product of the zeroes $=(\sqrt{15})(-\sqrt{15})=-15=\frac{-15}{1}=\frac{\text { Constant term }}{\text { Coefficient of } t^{2}}=-\mathbf{1 5} \quad$ Verified.
(vi) We have : $3 x^{2}-x-4=3 x^{2}+3 x-4 x-4=3 x(x+1)-4(x+1)=(x+1)(3 x-4)$

The value of $3 x^{2}-x-4$ is 0 , when the value of $(x+1)(3 x-4)$ is 0 , i.e., when $x+1=0$ or $3 x-4=0$, i.e., when $x=-1$ or $x=\frac{4}{3}$.
$\therefore \quad$ The zeroes of $3 x^{2}-x-4$ are -1 and $\frac{4}{3}$.
Therefore, sum of the zeroes $=-1+\frac{4}{3}=\frac{-3+4}{3}=\frac{1}{3}=\frac{-(-1)}{3}=-\frac{\text { Coefficient of } x}{\text { Coefficient of } x^{2}}=\frac{\mathbf{1}}{\mathbf{3}}$
and \quad product of the zeroes $=(-1)\left(\frac{4}{3}\right)=\frac{\text { Constant term }}{\text { Coefficient of } x^{2}}=\frac{-4}{3}$
Verified.
QUESTION 2. Find a quadratic polynomial whose sum of zeroes and product of zeroes are respectively.
(i) $\frac{1}{4},-1$
(ii) $\sqrt{2}, \frac{1}{3}$
(iii) $0, \sqrt{5}$
(iv) 1,1
(v) $-\frac{1}{4}, \frac{1}{4}$
(vi) 4,1

SOLUTION. Let the polynomial be $a x^{2}+b x+c$ and its zeroes be α and β.
(i) Here, $\alpha+\beta=\frac{1}{4}$ and $\alpha \cdot \beta=-1$

Thus the polynomial formed $=x^{2}-($ Sum of zeroes $) x+$ Product of zeroes $=x^{2}-\left(\frac{1}{4}\right) x-1=x^{2}-\frac{x}{4}-1$
The other polynomials are $k\left(x^{2}-\frac{x}{4}-1\right)$
If $k=4$, then the polynomial is $4 \boldsymbol{x}^{2}-\boldsymbol{x}-\mathbf{4}$.
(ii) Here, $\alpha+\beta=\sqrt{2} \quad \alpha . \beta=\frac{1}{3}$

Thus the polynomial formed
$=x^{2}-($ Sum of zeroes $) x+$ Product of zeroes
$=x^{2}-(\sqrt{2}) x+\frac{1}{3} \quad$ or $\quad x^{2}-\sqrt{2} x+\frac{1}{3}$
Other polynomials are $k\left(x^{2}-\sqrt{2} x+\frac{1}{3}\right)$
If $k=3$, then the polynomial is $3 x^{2}-3 \sqrt{2} x+1$
Ans.
(iii) Here, $\quad \alpha+\beta=0 \quad$ and $\alpha \cdot \beta=\sqrt{5}$

Thus the polynomial formed
$=x^{2}-($ Sum of zeroes $) x+$ Product of zeroes $=x^{2}-(0) x+\sqrt{5}=\boldsymbol{x}^{2}+\sqrt{\mathbf{5}}$.
(iv) Let the polynomial be $a x^{2}+b x+c$ and its zeroes be α and β. Then,

$$
\begin{aligned}
\alpha+\beta & =1=\frac{-(-1)}{1}=\frac{-b}{a} \\
\alpha \beta & =1=\frac{1}{1}=\frac{c}{a}
\end{aligned}
$$

If $a=1$, then $b=-1$ and $c=1$.
$\therefore \quad$ One quadratic polynomial which satisfy the given conditions is $\boldsymbol{x}^{\mathbf{2}}-\boldsymbol{x}+\mathbf{1}$.
Ans.
(v) Let the polynomial be $a x^{2}+b x+c$ and its zeroes be α and β. Then,

$$
\alpha+\beta=-\frac{1}{4}=\frac{-1}{4}=\frac{-b}{a}
$$

and

$$
\alpha \beta=\frac{1}{4}=\frac{c}{a}
$$

If $a=4$, then $b=1$ and $c=1$.
\therefore One quadratic polynomial which satisfy the given conditions is $\mathbf{4} \boldsymbol{x}^{2}+\boldsymbol{x}+\mathbf{1}$.
(vi) Let the polynomial be $a x^{2}+b x+c$ and its zeroes be α and β. Then.

$$
\alpha+\beta=4=\frac{-(-4)}{1}=\frac{-b}{a}
$$

and

$$
\alpha \beta=1=\frac{1}{1}=\frac{c}{a}
$$

If $a=1$, then $b=-4$ and $c=1$.
$\therefore \quad$ One quadratic polynomial which satisfy the given conditions is $\boldsymbol{x}^{\mathbf{2}}-\mathbf{4 x}+\mathbf{1}$.

EXERCISE 2.3

QUESTION 1. Divide the polynomial $p(x)$ by the polynomial $g(x)$ and find the quotient and remainder in each given of the following :
(i) $p(x)=x^{3}-3 x^{2}+5 x-3, g(x)=x^{2}-2$
(ii) $p(x)=x^{4}-3 x^{2}+4 x+5, g(x)=x^{2}+1-x$
(iii) $p(x)=x^{4}-5 x+6, g(x)=2-x^{2}$

SOLUTION. (i) Here, dividend and divisor are both in standard forms. So, we have :

$$
\begin{aligned}
& x ^ { 2 } - 2 \longdiv { x - 3 } \begin{array} { l }
{ x ^ { 3 } - 3 x ^ { 2 } + 5 x - 3 }
\end{array} \\
& x^{3}-\quad-2 x \\
& \begin{array}{l}
-\quad+ \\
-3 x^{2}+7 x-3
\end{array} \\
& -3 x^{2}+6 \\
& \begin{array}{ll}
+ & - \\
\hline & 7 x-9 \\
\hline
\end{array}
\end{aligned}
$$

\therefore The quotient is $\boldsymbol{x}-\mathbf{3}$ and the remainder is $\mathbf{7 x} \mathbf{- 9}$.
Ans.
(ii) Here, the dividend is already in the standard form and the divisor is not in the standard form. It can be written as $x^{2}-x+1$.
We have :

$$
\begin{aligned}
& x ^ { 2 } - x + 1 \longdiv { x ^ { 2 } + x - 3 } \\
& x^{4}-x^{3}+x^{2} \\
& \frac{-+\frac{-}{x^{3}-4 x^{2}+4 x}}{\frac{x^{3}}{}} \\
& x^{3}-x^{2}+x \\
& -\quad+\quad-3 x^{2}+3 x+5 \\
& -3 x^{2}+3 x-3 \\
& \begin{array}{r}
+\quad-\quad+ \\
8
\end{array}
\end{aligned}
$$

$\therefore \quad$ The quotient is $\boldsymbol{x}^{\mathbf{2}}+\boldsymbol{x}-\mathbf{3}$ and the remainder is $\mathbf{8}$.
(iii) We have divisor $\left[-x^{2}+2\right]$ and divident: $x^{4}-5 x-6$

$$
\begin{aligned}
& - x ^ { 2 } + 2 \longdiv { x ^ { 4 } - x ^ { 2 } - 2 } \\
& x^{4}-2 x^{2} \\
& \frac{-\quad+}{2 x^{2}-5 x+6} \\
& 2 x^{2}-4 \\
& \begin{array}{cc}
- & + \\
\hline & -5 x+10 \\
\hline
\end{array}
\end{aligned}
$$

\therefore The quotient is $\boldsymbol{-} \boldsymbol{x}^{2}-\mathbf{2}$ and the remainder is $\mathbf{- 5 x}+\mathbf{1 0}$.
Ans.

QUESTION 2. Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial :
(i) $t^{2}-3 ; 2 t^{4}+3 t^{3}-2 t^{2}-9 t-12$
(ii) $x^{2}+3 x+1 ; 3 x^{4}+5 x^{3}-7 x^{2}+2 x+2$
(iii) $x^{3}-3 x+1 ; x^{5}-4 x^{3}+x^{2}+3 x+1$

SOLUTION. (i) Let us divide $2 t^{4}+3 t^{3}-2 t^{2}-9 t-12$ by $t^{2}-3$.
We have : $2 t^{2}+3 t+4$

$$
\begin{aligned}
& t ^ { 2 } - 3 \longdiv { 2 t ^ { 4 } + 3 t ^ { 3 } - 2 t ^ { 2 } - 9 t - 1 2 } \\
& 2 t^{4}-6 t^{2}
\end{aligned}
$$

Since the remainder is 0 , therefore, $\boldsymbol{t}^{2}-\mathbf{3}$ is a factor of $2 t^{4}+3 t^{3}-2 t^{2}-9 t-12$.
(ii) Let us divide $3 x^{4}+5 x^{3}-7 x^{2}+2 x+2$ by $x^{2}+3 x+1$. We get,

$$
\begin{aligned}
& x ^ { 2 } + 3 x + 1 \longdiv { 3 x ^ { 2 } - 4 x + 2 } \begin{array} { | c }
{ 3 x ^ { 4 } + 5 x ^ { 3 } - 7 x ^ { 2 } + 2 x + 2 }
\end{array} \\
& 3 x^{4}+9 x^{3}+3 x^{2} \\
& -4 x^{3}-10 x^{2}+2 x \\
& -4 x^{3}-12 x^{2}-4 x \\
& \frac{+\quad+\quad}{2 x^{2}+6 x+2} \\
& 2 x^{2}+6 x+2 \\
& \begin{array}{lll}
- & - & - \\
\hline & 0 \\
\hline
\end{array}
\end{aligned}
$$

Since the remainder is 0 , therefore, $\boldsymbol{x}^{\mathbf{2}}+\mathbf{3 x} \boldsymbol{+ 1}$ is a factor of $3 x^{4}+5 x^{3}-7 x^{2}+2 x+2$
(iii) Let us divide $x^{5}-4 x^{3}+x^{2}+3 x+1$ by $x^{3}-3 x+1$. We get,

$$
\begin{aligned}
& x^{2}-1 \\
& x^{2}-3 x+1 \begin{aligned}
& x^{5}-4 x^{3}+x^{2}+3 x+1 \\
& x^{5}-3 x^{3}+x^{2}
\end{aligned} \\
&-\quad+\quad- \\
& \hline+x^{3} \\
&-x^{3}+3 x+1 \\
&++3 x-1 \\
&++ \\
& \hline
\end{aligned}
$$

Here, remainder is $2(\neq 0)$. Therefore, $\boldsymbol{x}^{\mathbf{3}}-\mathbf{3} \boldsymbol{x}+\mathbf{1}$ is not a factor of $x^{5}-4 x^{3}+x^{2}+3 x+1$.
Ans.
QUESTION 3. Obtain all the zeroes of $3 x^{4}+6 x^{3}-2 x^{2}-10 x-5$, if two of its zeroes are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$.

SOLUTION. Since two zeroes are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}, x=\sqrt{\frac{5}{3}}, x=-\sqrt{\frac{5}{3}}$
$\Rightarrow\left(x-\sqrt{\frac{5}{3}}\right)\left(x+\sqrt{\frac{5}{3}}\right)=x^{2}-\frac{5}{3}$ or $3 x^{2}-5$ is a factor of the given polynomial. Now, we apply the division algorithm to the given polynomial and $3 x^{2}-5$.

$$
\begin{aligned}
& 3 x^{2}-5 \xlongequal[\begin{array}{l}
3 x^{4}+6 x^{3}-2 x^{2}-10 x-5 \\
3 x^{4}-5 x^{2}
\end{array}]{\text { First term of quotient is } \frac{3 x^{4}}{3 x^{2}}=x^{2}} \\
& \text { Second term of quotient is } \frac{6 x^{3}}{3 x^{2}}=2 x \\
& 6 x^{3}+3 x^{2}-10 x-5 \\
& 6 x^{3}-10 x \\
& \frac{-\quad+}{3 x^{2}-5} \\
& \text { Third term of quotient is } \frac{3 x^{2}}{3 x^{2}}=1 \\
& 3 x^{2}-5 \\
& -\quad+ \\
& 0
\end{aligned}
$$

So, $3 x^{4}+6 x^{3}-2 x^{2}-10 x-5=\left(3 x^{2}-5\right)\left(x^{2}+2 x+1\right)+0=\left(3 x^{2}-5\right)(x+1)^{2}$
Quotient $=x^{2}+2 x+1=(x+1)^{2}$; Zeroes of $(x+1)^{2}$ are $-1,-1$.
Hence, all its zeroes are $\sqrt{\frac{5}{3}},-\sqrt{\frac{5}{3}},-1,-1$
Ans.
QUESTION 4. On dividing $x^{3}-3 x^{2}+x+2$ by a polynomial $g(x)$, the quotient and remainder were $x-2$ and $-2 x+4$, respectively. Find $g(x)$.

$$
\begin{aligned}
& p(x)=x^{3}-3 x^{2}+x+2 \\
& q(x)=x-2 \text { and } r(x)=-2 x+4
\end{aligned}
$$

SOLUTION. By Division Algorithm, we know that

$$
p(x)=q(x) \times g(x)+r(x)
$$

Therefore, $x^{3}-3 x^{2}+x+2=(x-2) \times g(x)+(-2 x+4)$
$\Rightarrow x^{3}-3 x^{2}+x+2+2 x-4=(x-2) \times g(x)$
$\Rightarrow \quad g(x)=\frac{x^{3}-3 x^{2}+3 x-2}{x-2}$
On dividing $x^{3}-3 x^{2}+3 x-2$ by $x-2$, we get $g(x)$

$$
\begin{array}{cc}
\begin{array}{c}
\frac{x^{2}-x+1}{x^{3}-3 x^{2}+3 x-2} \\
x^{3}-2 x^{2} \\
-+
\end{array} \\
\begin{array}{c}
-x^{2}+3 x-2 \\
-x^{2}+2 x \\
+- \\
\frac{-1}{x-2} \\
\frac{-+}{x-2}
\end{array} & \text { First term of } q(x)=\frac{x^{3}}{x}=x^{2} \\
\text { Second term of } q(x)=\frac{-x^{2}}{x}=-x \\
\text { Third term of } q(x)=\frac{x}{x}=1
\end{array} \quad \begin{aligned}
& \text { Hence, } \boldsymbol{g}(\boldsymbol{x})=\boldsymbol{x}^{2}-\boldsymbol{x}+\mathbf{1} .
\end{aligned}
$$

Ans.

QUESTION 5. Give examples of polynomials $p(x), g(x), q(x)$ and $r(x)$, which satisfy the division algorithm and
(i) $\operatorname{deg} p(x)=\operatorname{deg} q(x)$
(ii) $\operatorname{deg} q(x)=\operatorname{deg} r(x)$
(iii) $\operatorname{deg} q(x)=0$

SOLUTION.
(i) Let $q(x)=3 x^{2}+2 x+6$,
degree of $q(x)=2$
$p(x)=12 x^{2}+8 x+24$,
degree of $p(x)=2$
Here, $\operatorname{deg} \boldsymbol{p}(\boldsymbol{x})=\operatorname{deg} \boldsymbol{q}(\boldsymbol{x})$
(ii)

Here, $\operatorname{deg} \boldsymbol{q}(\boldsymbol{x})=\operatorname{deg} \boldsymbol{r}(\boldsymbol{x})$
Ans.
(iii) Let $p(x)=2 x^{4}+8 x^{3}+6 x^{2}+4 x+12$
$q(x)=2, \quad \quad$ degree of $q(x)=0$

Here, $\operatorname{deg} \boldsymbol{q}(\boldsymbol{x})=\mathbf{0}$.
Ans.

$$
\begin{aligned}
p(x) & =x^{5}+2 x^{4}+3 x^{3}+5 x^{2}+2 & & \\
q(x) & =x^{2}+x+1, & & \text { degree of } q(x)=2 \\
g(x) & =x^{3}+x^{2}+x+1 & & \\
r(x) & =2 x^{2}-2 x+1, & & \text { degree of } r(x)=2
\end{aligned}
$$

$$
\begin{aligned}
g(x) & =x^{4}+4 x^{3}+3 x^{2}+2 x+1 \\
r(x) & =10
\end{aligned}
$$

$$
\text { c) }=0
$$

Ans.

EXERCISE 2.4 (OPTIONAL)*

QUESTION 1. Verify that the numbers given alongside of the cubic polynomials below are their zeroes. Also verify the relationship between the zeroes and the coefficients in each case :
(i) $2 x^{3}+x^{2}-5 x+2 ; \frac{1}{2}, 1,-2$ (ii) $x^{3}-4 x^{2}+5 x-2 ; 2,1,1$

SOLUTION. (i) Comparing the given polynomial with $a x^{3}+b x^{2}+c x+d$, we get $a=2, b=1, c=-5$ and $d=2$.

$$
\begin{aligned}
p\left(\frac{1}{2}\right) & =2\left(\frac{1}{2}\right)^{3}+\left(\frac{1}{2}\right)^{2}-5\left(\frac{1}{2}\right)+2=\frac{1}{4}+\frac{1}{4}-\frac{5}{2}+2=\frac{1+1-10+8}{4}=\frac{0}{4}=0 \\
p(1) & =2(1)^{3}+(1)^{2}-5(1)+2=2+1-5+2=0 \\
p(-2) & =2(-2)^{3}+(-2)^{2}-5(-2)+2=2(-8)+4+10+2=-16+16=0 \\
\therefore \quad \frac{1}{\mathbf{2}}, \mathbf{1} & \text { and }-2 \text { are the zeroes of } 2 x^{3}+x^{2}-5 x+2 .
\end{aligned}
$$

So, $\alpha=\frac{1}{2}, \beta=1$ and $\gamma=-2$.
Therefore, $\quad \alpha+\beta+\gamma=\frac{1}{2}+1+(-2)=\frac{1+2-4}{2}=-\frac{\mathbf{1}}{\mathbf{2}}=\frac{-\boldsymbol{b}}{\boldsymbol{a}}$

$$
\alpha \beta+\beta \gamma+\gamma \alpha=\left(\frac{1}{2}\right)(1)+(1)(-2)+(-2)\left(\frac{1}{2}\right)=\frac{1}{2}-2-1=\frac{1-4-2}{2}=\frac{-\mathbf{5}}{2}=\frac{\boldsymbol{c}}{\boldsymbol{a}}
$$

and $\alpha \beta \gamma=\frac{1}{2} \times 1 \times(-2) \quad=-\mathbf{1}=\frac{-\mathbf{2}}{\mathbf{2}}=\frac{-\boldsymbol{d}}{\boldsymbol{a}}$
Verified.
(ii) Comparing the given polynomial with $a x^{3}+b x^{2}+c x+d$, we get
$a=1, b=-4, c=5$ and $d=-2$.

$$
\begin{aligned}
& p(2)=(2)^{3}-4(2)^{3}+5(2)-2=8-16+10-2=0 \\
& p(1)=(1)^{3}-4(1)^{2}+5(1)-2=1-4+5-2=0
\end{aligned}
$$

$\therefore \quad 2,1$ and 1 are the zeroes of $\boldsymbol{x}^{3}-4 \boldsymbol{x}^{2}+5 x-2$.
So, $\alpha=2, \beta=1$ and $\gamma=1$.
Therefore, $\quad \alpha+\beta+\gamma=2+1+1=4=\frac{-(-4)}{\mathbf{1}}=\frac{-\boldsymbol{b}}{\boldsymbol{a}}$

$$
\begin{aligned}
& \quad \alpha \alpha \gamma+\gamma \beta+\beta=(2)(1)+(1)(1)+(1)(2)=2+1+2=5=\frac{\mathbf{5}}{\mathbf{1}}=\frac{\boldsymbol{c}}{\boldsymbol{a}} \\
& \text { and } \alpha \beta \gamma=(2)(1)(1)=2=\frac{-(-\mathbf{2})}{\mathbf{1}}=\frac{-\boldsymbol{d}}{\boldsymbol{a}}
\end{aligned}
$$

Verified.
QUESTION 2. Find a cubic polynomial with the sum, sum of the products of its zeroes taken two at a time, and the product of its zeroes as 2, - 7, - 14 respectively.
SOLUTION. Let the cubic polynomial be $a x^{3}+b x^{2}+c x+d$, and its zeroes be α, β and γ.
Then,

$$
\alpha+\beta+\gamma=2=\frac{-(-2)}{1}=\frac{-b}{a}
$$

$$
\alpha \beta+\beta \gamma+\gamma \alpha=-7=\frac{-7}{1}=\frac{c}{a}
$$

and

$$
\alpha \beta \gamma=-14=\frac{-14}{1}=\frac{-d}{a}
$$

If $a=1$, then $b=-2, c=-7$ and $d=14$.
So, one cubic polynomial which satisfy the given conditions will be $x^{\mathbf{3}}-\mathbf{2} x^{2}-\mathbf{7 x}+\mathbf{1 4}$.
Ans.
QUESTION 3. If the zeroes of the polynomial $x^{3}-3 x^{2}+x+1$ are $a-b$, a and $a+b$, find a and b.
SOLUTION. Since $(a-b), a$ and $(a+b)$ are the zeroes of the polynomial $x^{3}-3 x^{2}+x+1$, therefore
$(a-b)+a+(a+b)=\frac{-(-3)}{1}=3$
So, $\quad 3 a=3 \Rightarrow a=1$
$(a-b) a+a(a+b)+(a+b)(a-b)=\frac{1}{1}=1$
$\Rightarrow a^{2}-a b+a^{2}+a b+a^{2}-b^{2}=1 \Rightarrow 3 a^{2}-b^{2}=1$
So, $\quad 3(1)^{2}-b^{2}=1 \Rightarrow 3-b^{2}=1$
$\Rightarrow \quad b^{2}=2 \quad$ or $\quad b= \pm \sqrt{2}$
Hence, $\boldsymbol{a}=\mathbf{1}$ and $b= \pm \sqrt{\mathbf{2}}$.
Ans.
QUESTION 4. If two zeroes of the polynomial $x^{4}-6 x^{3}-26 x^{2}+138 x-35$ are $2 \pm \sqrt{3}$, find other zeroes.

SOLUTION. We have : $2 \pm \sqrt{3}$ are two zeroes of the polynomial

$$
\begin{aligned}
p(x) & =x^{4}-6 x^{3}-26 x^{2}+138 x-35 \\
x & =2 \pm \sqrt{3} . \text { So, } x-2= \pm \sqrt{3}
\end{aligned}
$$

Let
Squaring, we get

$$
x^{2}-4 x+4=3, \quad \text { i.e., } \quad x^{2}-4 x+1=0
$$

Let us divide $p(x)$ by $x^{2}-4 x+1$ to obtain other zeroes.

$$
\begin{aligned}
& x ^ { 2 } - 4 x + 1 \longdiv { x ^ { 4 } - 2 x - 3 5 } \frac { x ^ { 2 } - 6 x ^ { 3 } - 2 6 x ^ { 2 } + 1 3 8 x - 3 5 } { x ^ { 4 } - 4 x ^ { 3 } } \\
& x^{4}-4 x^{3}+x^{2} \\
& -\quad+\quad-2 x^{3}-27 x^{2}+138 x \\
& -2 x^{3}+8 x^{2}-2 x \\
& +\quad-\quad+\quad+35 x^{2}+140 x-35 \\
& -35 x^{2}+140 x-35 \\
& \begin{array}{ccc}
+\quad- & + \\
\hline 0 \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
\therefore \quad p(x) & =x^{4}-6 x^{3}-26 x^{2}+138 x-35 \\
& =\left(x^{2}-4 x+1\right)\left(x^{2}-2 x-35\right) \\
& =\left(x^{2}-4 x+1\right)\left(x^{2}-7 x+5 x-35\right) \\
& =\left(x^{2}-4 x+1\right)[x(x-7)+5(x-7)] \\
& =\left(x^{2}-4 x+1\right)(x+5)(x-7)
\end{aligned}
$$

So, $(x+5)$ and $(x-7)$ are other factors of $p(x)$.

$\therefore \quad-5$ and 7 are other zeroes of the given polynomial.

QUESTION 5. If the polynomial $x^{4}-6 x^{3}+16 x^{2}-25 x+10$ is divided by another polynomial $x^{2}-2 x+k$, the remainder comes out to $x+a$, find k and a.
SOLUTION. Let us divide $x^{4}-6 x^{3}+16 x^{2}-25 x+10$ by $x^{2}-2 x+k$.

$$
\begin{aligned}
& x^{2}-4 x+(8-k) \\
& x ^ { 2 } - 2 x + k \longdiv { x ^ { 4 } - 6 x ^ { 3 } + 1 6 x ^ { 2 } - 2 5 x + 1 0 } \\
& x^{4}-2 x^{3}+k x^{2} \\
& \frac{-+-}{-4 x^{3}+(16-k) x^{2}-25 x} \\
& -4 x^{3}+8 x^{2}-4 k x \\
& \frac{+\quad-\quad+}{(8-k) x^{2}+(4 k-25) x+10} \\
& (8-k) x^{2}-2(8-k) x+(8-k) k \\
& \frac{-\quad+\quad}{\substack{-9 \\
\\
(2 k-9) x}}
\end{aligned}
$$

\therefore Remainder $=(2 k-9) x-(8-k) k+10$
But the remainder is given as $x+a$.
On comparing their coefficients, we have :

$$
2 k-9=1 \Rightarrow 2 k=10 \Rightarrow k=5
$$

and $\quad-(8-k) k+10=a$
So,

$$
\begin{aligned}
a & =-(8-5) 5+10 \\
& =-3 \times 5+10=-15+10=-5
\end{aligned}
$$

Hence, $\boldsymbol{k}=\mathbf{5}$ and $\boldsymbol{a}=\mathbf{- 5}$.
Ans.

