

Ans.

POLYNOMIALS

EXERCISE 2.1

SOLUTION. (*i*) There are **no** zeroes as the graph does not intersect the *x*-axis.

(ii) The number of zeroes is one as the graph intersects the x-axis at one point only.

(*iii*) The number of zeroes is **three** as the graph intersects the *x*-axis at three points.

(*iv*) The number of zeroes is **two** as the graph intersects the *x*-axis at two points.

- (v) The number of zeroes is four as the graph intersects the x-axis at four points.
- (vi) The number of zeroes is three as the graph intersects the x-axis at three points.

EXERCISE 2.2

QUESTION 1. Fi	ind the zeroes of the quadi	ratic polynomials and verify a	relationship between zeroe	es and
its	s coefficients.			
(<i>i</i>)	$x^2 - 2x - 8$	(<i>ii</i>) $4s^2 - 4s + 1$	(<i>iii</i>) $6x^2 - 3 - 7x$	
<i>(iv)</i>	$4u^2 + 8u$	(v) $t^2 - 15$	(<i>vi</i>) $3x^2 - x - 4$	
SOLUTION. (i)	$x^2 - 2x - 8 = x^2 - 4x + 2x - 8$	8 = x (x - 4) + 2 (x - 4) = (x - 4) (x - 4) = (x - 4) (x - 4) (x - 4) = (x - 4) (x - 4) (x - 4) = (x - 4) (x - 4) (x - 4) = (x - 4) (x - 4) (x - 4) = (x - 4) (x - 4) (x - 4) (x - 4) = (x - 4) = (x - 4) (x	(x+2)	
	So, the value of $x^2 - 2x - 8$ i	s zero when $x - 4 = 0$ or $x + 2 = 0$), <i>i.e.</i> , when $x = 4$ or $x = -2$.	
	So, the zeroes of $x^2 - 2x - 8$	are 4 , –2 .		
	Sum of the zeroes = $4 - 2 =$	$2 = \frac{-(-2)}{1} = \frac{-\text{ coefficient of } x}{\text{ coefficient of } x^2} = 2$		
	Product of the zeroes = $4(-2)$	$2) = -8 = \frac{-8}{1} = \frac{\text{constant term}}{\text{coefficient of } x^2} = -$	- 8	Verified.
<i>(ii)</i>	$4s^2 - 4s + 1 = 4s^2 - 2s^2 $	s - 2s + 1		
	= 2s (2s -	(-1) - 1 (2s - 1)		
	$=(2s-1)^{2}$	$(2s-1) = (2s-1)^2$		
	So, the value of $4s^2 - 4s + 1$	is zero when $2s - 1 = 0$, or $s = \frac{1}{2}$		
	Zeroes of the polynomial are	$e \frac{1}{2}, \frac{1}{2}$		

Sum of the zeroes
$$= \frac{1}{2} + \frac{1}{2} = 1 = -\left(-\frac{4}{4}\right) = \frac{-coefficient of x}{coefficient of x^2} = 1$$

Product of the zeroes $= \left(\frac{1}{2}\right)\left(\frac{1}{2}\right) = \frac{coefficient of x^2}{coefficient of x^2} = \frac{1}{4}$
(*iii*) We have: $(5x^2 - 3 - 7x) = (5x^2 - 7x - 3 = 6x^2 - 9x + 2x - 3) = 3x (2x - 3) + 1 (2x - 3) = (3x + 1) (2x - 3)$
The value of $6x^2 - 3 - 7x$ is 0 , when the value of $(3x + 1)(2x - 3)$ is 0 , *i.e.*,
when $3x + 1 = 0$ or $2x - 3 = 0$, *i.e.*, when $x = -\frac{1}{3}$ or $x = \frac{3}{2}$.
Therefore, sum of the zeroes $= -\frac{1}{3}, \frac{3}{2}, \frac{7}{6}, \frac{-(-7)}{6} = \frac{-Coefficient of x}{Coefficient of x^2} = \frac{7}{6}$
and product of zeroes $= -\left(-\frac{1}{3}\right)\left(\frac{3}{2}\right) = -\frac{3}{6} = \frac{Constant term}{Coefficient of x^2} = -\frac{7}{6}$
(if) We have: $4u^2 + 8u = 4u(u + 2)$
The value of $4u^2 + 8u = 4u(u + 2)$
The value of $4u^2 + 8u = 4u(u + 2)$
The value of $4u^2 + 8u$ is 0, when the value of $4u(u + 2) = 0$, *i.e.*, when $u = 0$ or $u + 2 = 0$, *i.e.*, when $u = 0$ or $u = -2$.
 \therefore The zeroes of $4u^2 + 8u$ are 0 and -2 .
Therefore, sum of the zeroes $= 0 + (-2) = -2 = -\frac{8}{4} - \frac{Coefficient of u^2}{Coefficient of u^2} = -2$.
and product of zeroes $= (0 (-2)) = 0 = \frac{0}{4} = \frac{Constant term}{Coefficient of u^2} = -2$.
and product of zeroes $= (0 (-2)) = 0 = \frac{0}{4} = \frac{Coefficient of u^2}{Coefficient of u^2} = 0$ or $u + \sqrt{15} = 0$, *i.e.*, when $t - \sqrt{15} = 0$ or $t + \sqrt{15} = 0$, *i.e.*, when $t - \sqrt{15} = 0$ or $t + \sqrt{15} = 0$, *i.e.*, when $t - \sqrt{15} = 0$ or $t + \sqrt{15} = 0$, *i.e.*, when $t - \sqrt{15} = 0$ or $t + \sqrt{15} = 0$, *i.e.*, when $t - \sqrt{15} = 0$ or $t + \sqrt{15} = 0$, *i.e.*, when $t - \sqrt{15} = 0$ or $t + \sqrt{15} = 0$, *i.e.*, when $t - \sqrt{15} = 0$ or $t + \sqrt{15} = 0$, *i.e.*, when $t - \sqrt{15} = 0$ or $t + \sqrt{15} = 0$, *i.e.*, when $t - \sqrt{15} = 0$ or $t + \sqrt{15} = 0$, *i.e.*, when $t - \sqrt{15} = 15$ tr $\sqrt{15}$ and $-\sqrt{15}$.
The zeroes of $t^2 - 15$ is 0 , when the value of $(u - \sqrt{15})(u + \sqrt{15})$ is 0 , *i.e.*, when $x + 1 = 0$ or $3x - 4 = 0$, *i.e.*, when $x + 1 = 0$ or $3x - 4 = 0$, *i.e.*, when

...(1)

Ans.

SOLUTION. Let the polynomial be $ax^2 + bx + c$ and its zeroes be α and β .

(*i*) Here, $\alpha + \beta = \frac{1}{4}$ and $\alpha \cdot \beta = -1$ Thus the polynomial formed = x^2 – (Sum of zeroes) x + Product of zeroes = $x^2 - \left(\frac{1}{4}\right)x - 1 = x^2 - \frac{x}{4} - 1$

The other polynomials are
$$k\left(x^2 - \frac{x}{4} - 1\right)$$

If $k = 4$, then the polynomial is $4x^2 - x - 4$.
(ii) Here, $\alpha + \beta = \sqrt{2}$ $\alpha\beta = \frac{1}{3}$
Thus the polynomial formed
 $= x^2 - (\text{Sum of zeroes}) x + \text{Product of zeroes}$
 $= x^2 - (\sqrt{2}x + \frac{1}{3})$ or $x^2 - \sqrt{2}x + \frac{1}{3}$
Other polynomials are $k\left(x^2 - \sqrt{2}x + \frac{1}{3}\right)$
If $k = 3$, then the polynomial is $3x^2 - 3\sqrt{2}x + 1$
Ans.
(iii) Here, $\alpha + \beta = 0$ and $\alpha \cdot \beta = \sqrt{5}$
Thus the polynomial formed
 $= x^2 - (\text{Sum of zeroes})x + \text{Product of zeroes} = x^2 - (0)x + \sqrt{5} = x^2 + \sqrt{5}$.
(iv) Let the polynomial be $ax^2 + bx + c$ and its zeroes be α and β . Then,
 $\alpha + \beta = 1 = \frac{-(-1)}{1} = \frac{-b}{a}$
 $\alpha\beta = 1 = \frac{1}{1} = \frac{c}{a}$
If $a = 1$, then $b = -1$ and $c = 1$.
 \therefore One quadratic polynomial which satisfy the given conditions is $x^2 - x + 1$.
(v) Let the polynomial be $ax^2 + bx + c$ and its zeroes be α and β . Then,
 $\alpha + \beta = -\frac{1}{4} = -\frac{1}{a} = -\frac{b}{a}$
and $\alpha\beta = \frac{1}{4} = \frac{c}{a}$
If $a = 4$, then $b = 1$ and $c = 1$.
 \therefore One quadratic polynomial which satisfy the given conditions is $4x^2 + x + 1$.
(v) Let the polynomial be $ax^2 + bx + c$ and its zeroes be α and β . Then,
 $\alpha + \beta = 4 = -\frac{(-4)}{1} = -\frac{b}{a}$
and $\alpha\beta = \frac{1}{4} = \frac{c}{a}$
If $a = 4$, then $b = 1$ and $c = 1$.
 \therefore One quadratic polynomial which satisfy the given conditions is $4x^2 + x + 1$.
(v) Let the polynomial be $ax^2 + bx + c$ and its zeroes be α and β . Then,
 $\alpha + \beta = 4 = -\frac{(-4)}{1} = -\frac{b}{a}$
and $\alpha\beta = 1 = \frac{1}{4} = \frac{c}{a}$

If a = 1, then b = -4 and c = 1.

 \therefore One quadratic polynomial which satisfy the given conditions is $x^2 - 4x + 1$.

EXERCISE 2.3

- **QUESTION 1.** Divide the polynomial p(x) by the polynomial g(x) and find the quotient and remainder in each given of the following :
 - (i) $p(x) = x^3 3x^2 + 5x 3$, $g(x) = x^2 2$
 - (ii) $p(x) = x^4 3x^2 + 4x + 5$, $g(x) = x^2 + 1 x$
 - (iii) $p(x) = x^4 5x + 6$, $g(x) = 2 x^2$

SOLUTION.

(*i*) Here, dividend and divisor are both in standard forms. So, we have :

 \therefore The quotient is x - 3 and the remainder is 7x - 9.

Ans.

(*ii*) Here, the dividend is already in the standard form and the divisor is not in the standard form. It can be written as $x^2 - x + 1$.

We have :

$$x^{2}-x+1 \underbrace{) \begin{array}{c} x^{2}+x-3 \\ x^{4} & - & 3x^{2}+ & 4x + 5 \\ x^{4} & - & x^{3} & + & x^{2} \\ \hline & & - & + & - \\ \hline & & & x^{3} & - & 4x^{2} + & 4x \\ & & & x^{3} & - & x^{2} + & x \\ \hline & & & - & + & - \\ \hline & & & - & 3x^{2} + & 3x + 5 \\ & & & - & x^{2} + & 3x - 3 \\ & & & + & - & + \\ \hline & & & & 8 \end{array}}$$

 \therefore The quotient is $x^2 + x - 3$ and the remainder is 8.

(*iii*) We have divisor $[-x^2 + 2]$ and divident : $x^4 - 5x - 6$

$$\begin{array}{r} -x^2 + 2 \\ \hline -x^2 + 2 \end{array} \overbrace{) x^4} & - 5x + 6 \\ x^4 - 2x^2 \\ - + \\ \hline 2x^2 - 5x + 6 \\ 2x^2 & - 4 \\ \hline - & + \\ \hline - & 5x + 10 \\ \end{array}$$

 \therefore The quotient is $-x^2 - 2$ and the remainder is -5x + 10.

Ans.

Ans.

QUESTION 2. Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial :

- (*i*) $t^2 3$; $2t^4 + 3t^3 2t^2 9t 12$
- (*ii*) $x^2 + 3x + 1$; $3x^4 + 5x^3 7x^2 + 2x + 2$
- (*iii*) $x^3 3x + 1$; $x^5 4x^3 + x^2 + 3x + 1$

SOLUTION. (i) Let us divide
$$2t^4 + 3t^3 - 2t^2 - 9t - 12$$
 by $t^2 - 3$.
We have : $2t^2 + 3t + 4$
 $t^2 - 3$) $2t^4 + 3t^3 - 2t^2 - 9t - 12$
 $2t^4 - 6t^2$
 $- \frac{+}{3t^3 + 4t^2 - 9t}$
 $3t^3 - 9t$
 $- \frac{+}{4t^2 - 12}$
 $- \frac{+}{4t^2 - 12}$

Since the remainder is 0, therefore, $t^2 - 3$ is a factor of $2t^4 + 3t^3 - 2t^2 - 9t - 12$. Ans. (*ii*) Let us divide $3x^4 + 5x^3 - 7x^2 + 2x + 2$ by $x^2 + 3x + 1$. We get,

$$\begin{array}{r} 3x^2 - 4x + 2 \\ \hline 3x^4 + 5x^3 - 7x^2 + 2x + 2 \\ 3x^4 + 9x^3 + 3x^2 \\ \hline - & - \\ \hline - & 4x^3 - 10x^2 + 2x \\ - & 4x^3 - 12x^2 - 4x \\ + & + \\ \hline & 2x^2 + 6x + 2 \\ 2x^2 + 6x + 2 \\ \hline & - & - \\ \hline & 0 \end{array}$$

0

Since the remainder is 0, therefore, $x^2 + 3x + 1$ is a factor of $3x^4 + 5x^3 - 7x^2 + 2x + 2$ Ans. (*iii*) Let us divide $x^5 - 4x^3 + x^2 + 3x + 1$ by $x^3 - 3x + 1$. We get,

$$\begin{array}{r} x^{2} - 1 \\ x^{2} - 3x + 1 \overline{\smash{\big)} x^{5} - 4x^{3} + x^{2} + 3x + 1} \\ x^{5} - 3x^{3} + x^{2} \\ - + - \\ - x^{3} + 3x + 1 \\ - x^{3} + 3x - 1 \\ + - + \end{array}$$

Here, remainder is $2 \neq 0$. Therefore, $x^3 - 3x + 1$ is not a factor of $x^5 - 4x^3 + x^2 + 3x + 1$. Ans. QUESTION 3. Obtain all the zeroes of $3x^4 + 6x^3 - 2x^2 - 10x - 5$, if two of its zeroes are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$.

SOLUTION. Since two zeroes are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$, $x = \sqrt{\frac{5}{3}}$, $x = -\sqrt{\frac{5}{3}}$ $\Rightarrow \left(x - \sqrt{\frac{5}{3}}\right)\left(x + \sqrt{\frac{5}{3}}\right) = x^2 - \frac{5}{3}$ or $3x^2 - 5$ is a factor of the given polynomial. Now, we apply the division

algorithm to the given polynomial and $3x^2 - 5$.

So, $3x^4 + 6x^3 - 2x^2 - 10x - 5 = (3x^2 - 5)(x^2 + 2x + 1) + 0 = (3x^2 - 5)(x + 1)^2$ Quotient = $x^2 + 2x + 1 = (x + 1)^2$; Zeroes of $(x + 1)^2$ are -1, -1.

Hence, all its zeroes are
$$\sqrt{\frac{5}{3}}, -\sqrt{\frac{5}{3}}, -1, -1$$
 Ans.

Ans.

QUESTION 4. On dividing $x^3 - 3x^2 + x + 2$ by a polynomial g(x), the quotient and remainder were x - 2 and -2x + 4, respectively. Find g(x).

$$p(x) = x^3 - 3x^2 + x + 2$$

 $q(x) = x - 2$ and $r(x) = -2x + 4$

SOLUTION. By Division Algorithm, we know that

$$p(x) = q(x) \times g(x) + r(x)$$
Therefore, $x^3 - 3x^2 + x + 2 = (x - 2) \times g(x) + (-2x + 4)$

$$\Rightarrow x^3 - 3x^2 + x + 2 + 2x - 4 = (x - 2) \times g(x)$$

$$\Rightarrow g(x) = \frac{x^3 - 3x^2 + 3x - 2}{x - 2}$$
On dividing $x^3 - 3x^2 + 3x - 2$ by $x - 2$, we get $g(x)$

$$\frac{x^2 - x + 1}{x - 2} \begin{bmatrix} x^3 - 3x^2 + 3x - 2 \\ x^3 - 3x^2 + 3x - 2 \\ x^3 - 2x^2 \\ - + \end{bmatrix}$$
First term of $q(x) = \frac{x^3}{x} = x^2$

$$\frac{-x^2 + 3x - 2}{-x^2 + 2x}$$
Second term of $q(x) = \frac{-x^2}{x} = -x$
Third term of $q(x) = \frac{x}{x} = 1$

$$\frac{-x^2}{x - 2}$$
Hence, $g(x) = x^2 - x + 1$.

QUESTION 5. Give examples of polynomials p(x), g(x), q(x) and r(x), which satisfy the division algorithm and (*i*) deg p(x) = deg q(x)(*ii*) $deg q(x) = \deg r(x)$ (iii) deg q(x) = 0Let $q(x) = 3x^2 + 2x + 6$, SOLUTION. (*i*) degree of q(x) = 2 $p(x) = 12x^2 + 8x + 24,$ degree of p(x) = 2Here, $\deg p(x) = \deg q(x)$ Ans. *(ii)* $p(x) = x^5 + 2x^4 + 3x^3 + 5x^2 + 2$ $q(x) = x^2 + x + 1$, degree of q(x) = 2 $g(x) = x^3 + x^2 + x + 1$ $r(x) = 2x^2 - 2x + 1$ degree of r(x) = 2Here, $\deg q(x) = \deg r(x)$ Ans. Let $p(x) = 2x^4 + 8x^3 + 6x^2 + 4x + 12$ (iii) q(x) = 2, degree of q(x) = 0 $g(x) = x^4 + 4x^3 + 3x^2 + 2x + 1$ r(x) = 10Here, deg q(x) = 0. Ans.

EXERCISE 2.4 (OPTIONAL)*

QUESTION 1. Verify that the numbers given alongside of the cubic polynomials below are their zeroes. Also verify the relationship between the zeroes and the coefficients in each case :

(i)
$$2x^3 + x^2 - 5x + 2; \frac{1}{2}, 1, -2$$
 (ii) $x^3 - 4x^2 + 5x - 2; 2, 1, 1$

SOLUTION. (i) Comparing the given polynomial with $ax^3 + bx^2 + cx + d$, we get

$$a = 2, b = 1, c = -5 \text{ and } d = 2.$$

$$p\left(\frac{1}{2}\right) = 2\left(\frac{1}{2}\right)^{3} + \left(\frac{1}{2}\right)^{2} - 5\left(\frac{1}{2}\right) + 2 = \frac{1}{4} + \frac{1}{4} - \frac{5}{2} + 2 = \frac{1+1-10+8}{4} = \frac{0}{4} = 0$$

$$p(1) = 2(1)^{3} + (1)^{2} - 5(1) + 2 = 2 + 1 - 5 + 2 = 0$$

$$p(-2) = 2(-2)^{3} + (-2)^{2} - 5(-2) + 2 = 2(-8) + 4 + 10 + 2 = -16 + 16 = 0$$

$$\therefore \quad \frac{1}{2}, \text{ 1 and } - 2 \text{ are the zeroes of } 2x^{3} + x^{2} - 5x + 2.$$
So, $\alpha = \frac{1}{2}, \beta = 1$ and $\gamma = -2.$
Therefore, $\alpha + \beta + \gamma = \frac{1}{2} + 1 + (-2) = \frac{1+2-4}{2} = -\frac{1}{2} = -\frac{b}{a}$

$$\alpha\beta + \beta\gamma + \gamma\alpha = \left(\frac{1}{2}\right)(1) + (1)(-2) + (-2)\left(\frac{1}{2}\right) = \frac{1}{2} - 2 - 1 = \frac{1-4-2}{2} = -\frac{5}{2} = \frac{c}{a}$$
and $\alpha\beta\gamma = \frac{1}{2} \times 1 \times (-2) = -1 = \frac{-2}{2} = -\frac{d}{a}$
(*ii*) Comparing the given polynomial with $ax^{3} + bx^{2} + cx + d$, we get
$$a = 1, b = -4, c = 5 \text{ and } d = -2.$$

$$p(2) = (2)^{3} - 4(2)^{3} + 5(2) - 2 = 8 - 16 + 10 - 2 = 0$$

$$p(1) = (1)^{3} - 4(1)^{2} + 5(1) - 2 = 1 - 4 + 5 - 2 = 0$$

$$\therefore \quad 2, 1 \text{ and 1 are the zeroes of } x^{3} - 4x^{2} + 5x - 2.$$
So, $\alpha = 2, \beta = 1$ and $\gamma = 1.$
Therefore, $\alpha + \beta + \gamma = 2 + 1 + 1 = 4 = \frac{-(-4)}{1} = -\frac{b}{a}$

$$\alpha \alpha \gamma + \gamma \beta + \beta = (2)(1) + (1)(1) + (1)(2) = 2 + 1 + 2 = 5 = \frac{5}{1} = \frac{6}{a}$$

and $\alpha \beta \gamma = (2)(1)(1) = 2 = \frac{-(-2)}{1} = \frac{-d}{a}$

- **QUESTION 2.** Find a cubic polynomial with the sum, sum of the products of its zeroes taken two at a time, and the product of its zeroes as 2, -7, -14 respectively.
- **SOLUTION.** Let the cubic polynomial be $ax^3 + bx^2 + cx + d$, and its zeroes be α , β and γ .

Then,

$$\alpha + \beta + \gamma = 2 = \frac{-(-2)}{1} = \frac{-b}{a}$$
$$\alpha\beta + \beta\gamma + \gamma\alpha = -7 = \frac{-7}{1} = \frac{c}{a}$$

and

If a = 1, then b = -2, c = -7 and d = 14.

 $\alpha\beta\gamma = -14 = \frac{-14}{1} = \frac{-d}{a}$

- So, one cubic polynomial which satisfy the given conditions will be $x^3 2x^2 7x + 14$. Ans. QUESTION 3. If the zeroes of the polynomial $x^3 - 3x^2 + x + 1$ are a - b, a and a + b, find a and b.
- **SOLUTION.** Since (a b), a and (a + b) are the zeroes of the polynomial $x^3 3x^2 + x + 1$, therefore

$$(a-b) + a + (a+b) = \frac{-(-3)}{1} = 3$$

So, $3a = 3 \implies a = 1$
 $(a-b)a + a(a+b) + (a+b)(a-b) = \frac{1}{1} = 1$
 $\implies a^2 - ab + a^2 + ab + a^2 - b^2 = 1 \implies 3a^2 - b^2 = 1$
So, $3(1)^2 - b^2 = 1 \implies 3 - b^2 = 1$
 $\implies b^2 = 2$ or $b = \pm \sqrt{2}$

Hence, a = 1 and $b = \pm \sqrt{2}$.

QUESTION 4. If two zeroes of the polynomial $x^4 - 6x^3 - 26x^2 + 138x - 35$ are $2 \pm \sqrt{3}$, find other zeroes.

SOLUTION. We have : $2 \pm \sqrt{3}$ are two zeroes of the polynomial $p(x) = x^4 - 6x^3 - 26x^2 + 138x - 35$ $x = 2 \pm \sqrt{3}$, So, $x - 2 = \pm \sqrt{3}$ Let Squaring, we get $x^2 - 4x + 4 = 3$, *i.e.*, $x^2 - 4x + 1 = 0$ Let us divide p(x) by $x^2 - 4x + 1$ to obtain other zeroes. $x^2 - 2x - 35$ $x^2 - 4x + 1$) $x^4 - 6x^3 - 26x^2 + 138x - 35$ $x^4 - 4x^3 + x^2$ $\frac{- + -}{- 2x^3 - 27x^2 + 138x}$ $-2x^3 + 8x^2 - 2x$ + - + - $35x^2$ + 140x - 35 $-35x^2 + 140x - 35$ _ + 0

Ans.

Verified.

Ans.

$$\therefore \quad p(x) = x^4 - 6x^3 - 26x^2 + 138x - 35$$

= $(x^2 - 4x + 1)(x^2 - 2x - 35)$
= $(x^2 - 4x + 1)(x^2 - 7x + 5x - 35)$
= $(x^2 - 4x + 1)[x(x - 7) + 5(x - 7)]$
= $(x^2 - 4x + 1)(x + 5)(x - 7)$

So, (x + 5) and (x - 7) are other factors of p(x).

$$\therefore$$
 – 5 and 7 are other zeroes of the given polynomial.

QUESTION 5. If the polynomial $x^4 - 6x^3 + 16x^2 - 25x + 10$ is divided by another polynomial $x^2 - 2x + k$, the remainder comes out to x + a, find k and a.

SOLUTION. Let us divide
$$x^4 - 6x^3 + 16x^2 - 25x + 10$$
 by $x^2 - 2x + k$.

$$\begin{array}{r} x^2 - 4x + (8 - k) \\ x^2 - 2x + k \end{array} \xrightarrow{(x^2 - 4x + (8 - k))} x^4 - 6x^3 + 16x^2 - 25x + 10 \\ x^4 - 2x^3 + kx^2 \\ - + - \\ - 4x^3 + (16 - k)x^2 - 25x \\ - 4x^3 + 8x^2 - 4kx \\ + - \\ - 4x^3 + 8x^2 - 4kx \\ + - \\ (8 - k)x^2 + (4k - 25)x + 10 \\ (8 - k)x^2 - 2(8 - k)x + (8 - k)k \\ - + \\ - \\ (2k - 9)x - (8 - k)k + 10 \end{array}$$

 $\therefore \text{ Remainder } = (2k-9) x - (8-k) k + 10$ But the remainder is given as x + a. On comparing their coefficients, we have : $2k-9 = 1 \implies 2k = 10 \implies k = 5$ and -(8-k)k + 10 = aSo, a = -(8-5)5 + 10 $= -3 \times 5 + 10 = -15 + 10 = -5$

Hence, k = 5 and a = -5.

Ans.